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Abstract— Video moment localization, as an important branch
of video content analysis, has attracted extensive attention in
recent years. However, it is still in its infancy due to the
following challenges: cross-modal semantic alignment and local-
ization efficiency. To address these impediments, we present a
cross-modal semantic alignment network. To be specific, we first
design a video encoder to generate moment candidates, learn
their representations, as well as model their semantic relevance.
Meanwhile, we design a query encoder for diverse query intention
understanding. Thereafter, we introduce a multi-granularity
interaction module to deeply explore the semantic correlation
between multi-modalities. Thereby, we can effectively complete
target moment localization via sufficient cross-modal semantic
understanding. Moreover, we introduce a semantic pruning
strategy to reduce cross-modal retrieval overhead, improving
localization efficiency. Experimental results on two benchmark
datasets have justified the superiority of our model over several
state-of-the-art competitors.

Index Terms— Cross-modal moment localization, coarse-to-fine
semantic alignment, hierarchical semantic pruning.

I. INTRODUCTION

CROSS-MODAL video retrieval, aiming to search for a
whole video from a large-scale video collection via a

given query, has attracted increasing research interest [1], [2].
In short, it mainly focuses on determining whether a specific
video contains the semantic of the given query. However,
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Fig. 1. Examples of localizing moments via two queries within an untrimmed
video.

an untrimmed video usually contains complex scenes and
events. This induces only part of the video content matches
the semantic of the given query, while the rest is irrelevant
and may be not desired by users [3], [4]. As illustrated
in Fig. 1, the video depicts a scenario that a bartender is
inviting a customer to taste various drinks. One may only
pay close attention to the moment “the man is tasting this
third drink”. Consequently, localizing specific moments from
a long and untrimmed video via natural language queries,
i.e., Cross-modal Moment Localization, is essential [5].

Despite the intense interest in the task of cross-modal
moment localization, it remains a highly challenging problem.
The primary reasons are as follows: 1) Effective Cross-modal
Semantic Alignment. Given an untrimmed video, people may
pose different queries to locate their desired moments. These
queries can be roughly grouped into two types: summary
queries and detailed queries. As shown in Fig. 1, there
are two queries (i.e., Q1 and Q2) referring to moments
marked with green and red bounding boxes, respectively.
The former (summary query) “two men are tasting different
drinks.” is utilized to localize the moment containing a series
of successive actions and complex interactions; while the
latter (detailed query) “the man is tasting this third drink.”
is designed for the moment corresponding to the specific
clue word “third”. Obviously, moments, localized by two
types of queries, involve different visual semantic informa-
tion. In light of this, how to effectively align the diverse
textual (query) semantic information with the visual semantic
exploited from the given video is a crucial problem. Although
much progress has been made in bridging visual and textual
semantic information [6], [7], yet they suffer from several
critical shortcomings. On the one hand, some methods [3], [6]
conduct coarse-grained (clip-by-sentence) semantic matching
between two modalities, ignoring the semantic correlation
between key video frames and temporal words. Thereby, they
fail to localize the moment depicted by the detailed query
(e.g., Q2). On the other hand, certain methods [7], [8] [9]
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Fig. 2. Schematic illustration of our proposed CLEAR model.

exploit fine-grained (frame-by-word) semantic interaction to
implement moment localization for detailed queries. However,
for summary queries (e.g., Q1), such operation may bury
meaningful global visual-textual interaction into trivial details,
and hence induces a sharp degradation on localization per-
formance. 2) Efficient Cross-modal Moment Localization.
As shown in Fig. 1, to localize these two target moments,
most existing methods [4], [8] [7], [9] [10] first consider the
current video and each given query as a “video-query” pair,
and then typically utilize the query-aware attentive mechanism
to localize the desired moment. In other words, they have to
repeat the prior steps until all “video-query” pairs have been
processed, named as iterative “query-for-moment” models [5],
thereby resulting in inefficiency. Consequently, how to build
an efficient cross-modal moment localization model is still a
largely unsolved problem.

To address the aforementioned challenges, we present an
end-to-end Coarse-to-fine cross-modaL sEmantic Alignment
netwoRk, dubbed as CLEAR, as illustrated in Fig. 2. Con-
cretely, we first design a dual-path neural network, com-
prising two independent modules: the video representation
network (VRN) and the query representation network (QRN).
Thereinto, VRN is designed to learn moment representations
and model their semantic relevance, while QRN is utilized
to embed queries. We then develop a multi-granularity inter-
action network (MIN) for cross-modal semantic alignment.
We finally utilize the coarse-grained semantic pruning to
filter out irrelevant moments, and the fine-grained semantic
alignment for moment localization. Compared with previ-
ous models, our coarse-to-fine approach effectively reduces
retrieval overhead and hence boosts the efficiency of moment
localization remarkably.

The main contributions of our work are three-fold:
• We propose a cross-modal semantic alignment network,

which can realize efficient moment localization in a
coarse to fine manner. To the best of our knowledge, this
is the first work that integrates both semantic pruning and
semantic alignment into the task of cross-modal moment
localization.

• We present a novel video encoder to synchronously
model the hierarchical semantic and temporal-spatial
position relation among video moments. By this means,
the enhanced moment features can be well adapted to
diverse queries for effective cross-modal semantic align-
ment, therefore improving localization accuracy.

• We perform extensive experiments on two benchmark
datasets to justify the superiority of our model on both

accuracy and efficiency. As a side contribution, we have
released the codes and parameter settings.1

The rest of this paper is organized as follows. Section II
reviews the related work. Section III and Section IV detail
our proposed CLEAR model and its justification, respectively.
We conclude the work and discuss the future direction in
Section V.

II. RELATED WORK

In this section, we briefly review the following two research
directions highly related to ours: temporal action localization
and cross-modal moment localization.

A. Temporal Action Localization

Temporal action localization aims to predict the start and
end points of a specific action from an untrimmed video.
In 2016, Singh et al. [11] presented a multi-stream Bi-LSTM
to effectively obtain the long-term temporal correlations for
fine-grained action detection. Meanwhile, Shou et al. [12]
proposed an end-to-end segment-based 3D convolutional
neural network (S-CNN) to capture spatio-temporal infor-
mation, thereby improving action localization performance.
Considering the sliding window based proposal generation
would lead to an increase in processing time overhead,
Gao et al. [13] presented a novel temporal unit regression
network (TURN) for fast temporal action proposal generation.
Relevant experimental results verify that integrating TURN,
as the proposal generation sub-model, into S-CNN can further
improve localization performance. However, the above models
still fail to fully explore the temporal context information
and multi-stream features, resulting in limited performance
improvement. In light of this, Chao et al. [14] introduced a
novel temporal action localization network (TAL-Net) based
on Faster R-CNN to deeply exploit the temporal context
information and multi-stream feature fusion, improving the
overall performance. Since this multi-tower dilated temporal
convolution based TAL-Net may not fully improve localization
efficiency, Zhao et al. [15] proposed a structural temporal
pyramid pooling based structured segment network for more
efficient temporal action localization.

Although the aforementioned approaches have achieved
promising performance, they are still limited to the pre-defined
simple action list, such as “drinking and smoking”, “open
the door and sit down”, failing to localize complex activities
expressed in arbitrary natural language.

B. Cross-Modal Moment Localization

Different from temporal action localization, cross-modal
moment localization works towards localizing the target
moment in a certain video related to the given query. In 2017,
Gao et al. [6] designed a temporal coordinate regression
network, which can jointly predict action proposals and refine
the temporal boundaries. In the same year, Hendricks et al. [3]
employed a moment context network (MCN) to integrate
local and global video features for query guided moment

1Our open source code: https://github.com/Huyp777/CSUN
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localization. As previous models ignore the spatial-temporal
information within the visual and textual modalities, Liu et al.
[4], [8] designed two different attention-based networks for
moment localization. The former aims to capture the most
important visual context information to enhance the moment
representations, while the latter focuses on extracting useful
keywords from the given query. Subsequently, Yuan et al. [7]
designed an attention based location regression (ABLR).
It first adopts a co-attention memory model to capture the
spatial-temporal interactions between video segments and the
query, and then generates the temporal coordinate of the target
moment via the attention based regression network. To better
exploit the spatial-temporal information in both modalities,
Xu et al. [16] introduced a multi-level model and utilized
video captioning as an auxiliary task to further guide the
temporal coordinate prediction of the target moment. As prior
studies only focus on one aspect, such as contextual fea-
ture representation or spatial-temporal information modeling,
Zhang et al. [9], Lin et al. [10] proposed the cross-modal
interaction network (CMIN) to utilize the graph convolution
network and multi-head self attention for fine-grained repre-
sentation learning on each modality. Moreover, it adopts query
reconstruction strategy to further strengthen the cross-modal
representations. Considering that CMIN cannot sufficiently
perceive corresponding contextual information on the fused
features, Zhang et al. [17] introduced a 2D temporal adjacent
network (2D-TAN) to model the temporal relationships of
multi-modalities in the 2D feature map for more deeply
cross-modal semantic understanding.

Although much progress has been made in develop-
ing multi-modal representation and cross-modal fusion, yet
they suffer from two critical shortcomings: 1) they ignored
the necessary hierarchical similarity evaluation [18] towards
video-query interaction, and hence fails to deliver significant
improvement on localization accuracy; 2) they did not consider
any information pruning strategy to accelerate localization.
Namely, to localize all target moments in a certain video
regarding the relevant queries, they need to repeat the same
operation iteratively until all the queries have been processed
completely, resulting in low efficiency.

III. OUR PROPOSED METHOD

As shown in Fig. 2, our proposed CLEAR model mainly
comprises two components: 1) a dual-path neural network
including VRN and QRN. The former is designed to generate
moment candidates, learn their representations and model
their semantic relevance. The latter is utilized to extract
representations for given queries. And 2) a multi-granularity
interaction module is built to implement the cross-modal
semantic alignment between two modalities. In what follows,
we will detail them sequentially.

A. Problem Formulation

Let V = {v1, . . . , vk, . . . , vN } be a training set of N
untrimmed videos, where vk denotes the k-th video. Each
video vk is annotated by Mk queries (represented as Qk =
{qk,1, . . . , qk, j , . . . , qk,Mk }), and each query qk, j corresponds

to a specific moment that starts at t j
s and ends at t j

e . Based on
the training data, we aim at learning a cross-modal seman-
tic alignment network. During the inference, given a new
untrimmed video vx and its corresponding query set Qx ,
we could first generate its moment candidate set Cx and then
obtain representations (�Cx and �Qx ) for both modalities. After-
wards, we can utilize multi-granularity cross-modal interaction
to effectively localize the target moments.

B. Video Representation Module

For the given video vk , to generate the moment candidate set
Ck and learn the representations of these moments, we propose
a novel video representation network VRN. It consists of
three parts: enhanced moment representing, position relation
determining, and hierarchical semantic modeling.

1) Enhanced Moment Representing: Given an untrimmed
video vk , we first segment it into L video units with
a fixed temporal step. And then we utilize a pre-trained
3D convolutional network (C3D) [19] to extract their fea-
tures, obtaining the corresponding feature sequence Uk =
[uk,1, . . . , uk,l , . . . , uk,L ], where uk,l is the representation of
the l-th video unit. Afterward, we intend to build a model to
enhance these local features via context information.

Concretely, we utilize Bi-TCN model [20], instead of
Bi-LSTM or Bi-GRU [21], [22], to capture long-term semantic
dependencies for each unit. As illustrated in Fig. 3, each uk,i

can integrate the contextual information from two directions
(pre/post-context), therefore obtaining more comprehensive
representations. Generally, inputting Uk into the Bi-TCN with
R layers, the output can be formulated as,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�U(1)
k = θ1(Uk, δ

1, d1),
...�U(r)

k = θr (�U(r−1)
k , δr , dr ),

...�U(R)
k = θR(�U(R−1)

k , δR, d R),

(1)

where θr refers to the 1 D dilated convolution of the r -th
layer, dr and δr respectively denote the dilation factor and
filter kernel size of θr .

Having obtained �U(R)
k , we could generate moment candi-

dates for localization. As illustrated in Fig. 3, we first adopt
multi-scale temporal pooling [3] to generate representations
for all possible enumerated moments. For example, the first l
unit features are max pooled to form the representation for the
moment starting at the 1-th unit and ending at the l-th unit,
i.e., �ck

1,l = max pool(�uk,1,�uk,2, . . . ,�uk,l ). Similarly, the whole
(L) unit features can be max pooled to generate the represen-
tation for the moment starting at the 1-th unit and ending at the
L-th unit, denoted by �ck

1,L = max pool(�uk,1,�uk,2, . . . ,�uk,L).
In this way, the basic moment representation set Ck , containing
representations of Δ = L(1+L)

2 moment candidates, is gener-
ated. Subsequently, we adopt the multi-layer perception (MLP)
network to output the enhanced moment representation set�Ck ∈ R

Δ×d for all moment candidates, where d is the feature
dimension of each moment candidate.
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Fig. 3. The pipeline of the enhanced moment representing module. It first adopts the C3D model to obtain unit features. And then it incorporates the Bi-TCN
model to enhance the unit feature by capturing its pre-context and post-context information. Concretely, the kernel size is 3 and the necessary zero paddings
are also added to ensure the length of the output sequence is consistent with that of input units. Subsequently, a series of multi-scale max pooling operations
are adopted to generate the basic moment representation set �Ck . Finally, a MLP model is applied to obtain the enhanced moment representation set �Ck .

Fig. 4. Illustration of hierarchical semantic building. It first selects R representative moment candidates from �Ck as anchor moments Ak . And then it builds
the video semantic tree Ik to indicate the semantic structure of �Ck .

2) Position Relation Determining: To well exploit rela-
tions [17] among moment candidates, we project �Ck into a
temporal-spatial position map, dubbed as Jk . As illustrated
in Fig. 4, the horizontal and vertical axes of Jk separately
represent the starting and lasting units of each moment.
The l-th column of Jk place enhanced representations of
moment candidates starting at the l-th video unit. Note that,
Jk ∈ R

L×L×d is indeed a lower triangular matrix, where
the first two dimensions indicate the maximum indexes of
the starting and lasting points. In addition, with the help
of Jk , the real start and end time of each moment can be
easily obtained. Without loss of generality, supposing the total
duration of video vk is Tk , the duration of each video unit
would be Tk

L , and the real temporal range of the moment �ck
l,l

is
�
(l − 1) × Tk

L , l × Tk
L

	
.

3) Hierarchical Semantic Modeling: Having obtained the
enhanced moment representations and determined their
temporal-spatial relations, we explore the semantic relation-
ship between different moments. Particular, in this paper,
we assume that if two moments have an obvious temporal
entailment relation, they indeed have an inclusive seman-
tic relationship. As illustrated in Fig. 1, two moments (in
green and red boxes) have an obvious overlap in temporal
span, while the semantic of the former one (“Two men are
tasting different drinks”) indeed covers the semantic of the
latter one (“The man is tasting this third drink”). Because
tasting the third drink is an instance of tasting different
drinks.

To model the hierarchical semantic based on �Ck , we first
select R anchor moments Ak = 


ak,r
�R

r=1, where each ak,r is
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Fig. 5. Illustration of MIN. (a) The coarse-grained semantic measuring between anchor moments Ak and �Qk for semantic similarity metric learning; (b) The
fine-grained semantic fusing between Jk and �Qk to form cross-modal representation �Fk and calculate the confidence map Hk .

chosen as follows,

ak,r

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�ck
1,L, r = 1,

�ck

1,L−r

2

, 1 < r ≤ R & r mod 2 = 0,

�ck

L−(�r

2
�−1),L−(�r

2
�−1)

, 1 < r ≤ R & r mod 2 �= 0.

(2)

Based on Ak , we then build up a visual semantic tree,
dubbed as Ik . It divides the overall semantic of vk into P
(i.e., P = �R/2�) layers. As shown in Fig. 4, the first anchor
moment ak,1 (�ck

1,L) is treated as the root of Ik , since it can
cover the semantic of all moment candidates. In the following,
we rename it as S1,l

Ck
. Subsequently, two adjacent anchor

moments ak,2 (�ck
1,L−1) and ak,3 (�ck

L ,L) are considered as the

left and right semantic nodes of the 2-th layer, denoted as S2,l
Ck

and S2,r
Ck

, respectively. Therein, S2,l
Ck

can cover the semantic of
moments �ck

i, j (1 ≤ i ≤ j ≤ L − 1). Analogously, ak,R−1
and ak,R are set as two semantic nodes of the P-th layer.
Moreover, for two adjacent semantic layers, S p,l

Ck
and S p,r

Ck
are

both subsets of S p−1,l
Ck

, i.e., S p,l
Ck

⊂ S p−1,l
Ck

, S p,r
Ck

⊂ S p−1,l
Ck

(1 ≤ p ≤ P).

C. Query Representation Module

To learn query representations, we directly utilize the
pre-trained Bidirectional Encoder Representations from Trans-
formers (BERT) [23], [24], instead of the word embedding
based Bi-LSTM and its variants [25], [26], to obtain the
corresponding semantic features for all queries, expressed
as �Qk = {�qk,1, . . . ,�qk, j , . . . ,�qk,Mk }, where �qk, j denotes

the feature representation of the j -th query related to vk .
Subsequently, we utilize a one-layer fully connected network
to obtain the final query representation �Qk , formulated as
follows,

�Qk = σq (Wq �Qk + bq),

= {�qk
1 , . . . ,�qk

j , . . . ,�qk
Mk

}, (3)

where Symbol σq , Wq and bq respectively denote the ReLU
function [27], weight matrix and bias vector. �qk

j refers to the
final representation of the j -th query related to vk .

D. Multi-Granularity Interaction Module

Having obtained representations �Ck and �Qk , we develop the
MIN to explore cross-modal semantic correlation.

1) Coarse-Grained Semantic Alignment: We project the
anchor moments Ak ⊂ �Ck and the corresponding �Qk into a
shared isomorphic representation space for semantic similarity
metric learning. As shown in Fig. 5 (a), we utilize Intersection
over Union (IoU) [28] to obtain the cross-modal semantic
similarity of each “moment-query” pair. Specifically, the IoU
between each “moment-query” pair is calculated as follows,

IoU
ak,p�qk, j

=
min

�
t j
e , t p

e


− max

�
t j
s , t p

s



max
�

t j
e , t p

e


− min

�
t j
s , t p

s

 , (4)

where t p
s and t p

e respectively denote the start and end points
of the p-th anchor moment ak,p , and t j

s and t j
e are the ground

truth start and end points of the target moment depicted by
the j -th query �qk, j .

Furthermore, based on the IoU scores of “moment-query”
pairs, we construct the similarity matrix M∗

k for preserving the
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intrinsic semantic similarities of them. Subsequently, we pro-
pose a loss function �1 for semantic similarity metric learning,

�1 =
�

k

� ��AT
k

�Qk − dM∗
k

��2
F

�
, (5)

where
��·��F denotes the Frobenius norm, d refers to the

dimension of multi-modality (i.e., anchor moment and query)
features, and M∗

k is the cross-modal similarity matrix.
2) Fine-Grained Semantic Alignment: We adopt

element-wise multiplication � to fuse multi-modal features.
As shown in Fig. 5 (b), the moment based temporal-spatial
position map Jk is successively fused with each �qk

j ∈ �Qk

to form the corresponding cross-modal representation map�Fk = { �f k
j }Mk

j=1. Concretely, for each �f k
j ∈ �Fk , it is calculated

as follows,

�f k
j =

��qk
j ��ck

m,n

	L ,L

1≤m≤n
, (6)

where � denotes the element-wise multiplication.
Based on �Fk , the confidence map set (Hk) can be obtained

by a MLP network. In Fig. 5 (b), each h̄k
j ∈ Hk indicates the

matching scores between the j -th query �qk
j and Δ moment

candidates in Jk . Specially, the darker the color is, the more
similar the semantics will be, and vice versa. To generate
confidence scores more accurately, we also adopt correspond-
ing IoU values as the supervision information and propose a
binary cross entropy loss function for semantic fusing learning

between Jk and �Qk , formulated as follows,

�k =
Mk�
j=1

1

Δ

Δ�
i=1

�
o j

i log p j
i +

�
1 − o j

i


log

�
1 − p j

i

	
, (7)

where o j
i denotes the IoU value between the i -th moment can-

didate and the j -th query, p j
i is the corresponding similarity

score of them in confidence map h̄k
j . Therefore, the overall loss

function for N videos and their related queries is formulated
as follows,

�2 =
N�

k=1

�k . (8)

The final objective function of our CLEAR model is the
combination of the above two (�1 and �2),

� = �1 + α�2, (9)

where α is the non-negative trade-off parameter. Obviously,
multi-granularity (coarse/fine-grained) semantic alignment is
integrated into the same cross-modal learning framework.

E. Inference

After the model training has been completed, our pro-
posed CLEAR could harvest the learned cross-modal semantic
knowledge for moment localization. For the given untrimmed
video vx and its related query set Qx , we first encode them
by VRN and QRN, respectively. Afterwards, we utilize MIN
to obtain the semantic similarity between �Qx and Ix , as well
as the confidence score map Hx . Finally, we can localize the
target moments corresponding to the given queries efficiently

Algorithm 1 Coarse-to-Fine Moment Localization

through coarse-to-fine semantic aligning. The overall proce-
dure is briefly summarized in Algorithm 1.

Taking �qx
2 from Qx in Fig. 6 as an example, after completing

the corresponding similarity evaluation between �qx
2 (in yellow)

and three anchor moments (i.e., ax,1, ax,2, and ax,3 in blue),
we have two observations: 1) compared to ax,1, �qx

2 has more
similar semantics to ax,2 and ax,3. We then continue searching
for more appropriate semantic node from the second layer
of Ix ; 2) the semantics of �qx

2 and ax,2 are closer, we hence
obtain the refined semantic node S2,l

Cx
from �Ix , corresponding

to the 13-th line in Algorithm 1. Furthermore, guided by S2,l
Cx

,
the target moment is localized from the yellow area of h̄ x

2.
Analogously, we can effectively localize the target moments
related to other three queries from the relatively small areas
(highlighted in corresponding color) of their confidence maps.

IV. EXPERIMENTS

To thoroughly justify the effectiveness of our proposed
model, we carried out extensive experiments to answer the
following three research questions (RQs):
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Fig. 6. A simple illustration of our inference process. VRN first divides the given vx into 8 equal video units, and then obtains the enhanced moment
representation set �Cx and the two-layer semantic tree Ix . Meanwhile, QRN encodes queries into �Qx . Thereafter, the cross-modal semantic similarity and
corresponding confidence score maps Hx can be obtained by MIN. According to Algorithm 1, we can determine the appropriate range in Ix and obtain the
refined h̄x

j for moment localization.

• RQ1: Is our proposed CLEAR able to outperform several
state-of-the-art competitors on moment localization?

• RQ2: Is each component of our model helpful for boost-
ing the performance?

• RQ3: Is CLEAR much more efficient than the state-of-
the-art competitors?

A. Experimental Settings

1) Datasets: In this paper, we adopted two benchmark
datasets, namely ActivityNet Captions [29] and TACoS [6]
to evaluate our proposed model. ActivityNet Captions con-
tains 20,000 untrimmed videos and more than 70,000 natural
language queries along with temporal annotations. As to
TACoS, it is derived from MPII Cooking Composite Activities
dataset [30] and contains 127 videos related to more than
18,000 natural language queries and temporal annotations.
Compared to ActivityNet Captions, the video contents of
TACoS are limited to single cooking scenes, but each video
involves much more target moments to be localized, thus may
make moment localization more difficult.

2) Evaluation Metrics: To thoroughly measure our model
and the baselines, we selected “R@n, IoU = m” designed
by [28] as the evaluation metric. In the following, we utilized
R(n, m) to denote “R@n, IoU = m” and set the unified evalu-
ation criteria R(n, m) with n ∈ {1, 5} and m ∈ {0.3, 0.5, 0.7}.
Moreover, we employed the total localization time (RT ) and
the average localization time (RA) as the efficiency evaluation
metrics.

3) Implementation Details: For each video in these datasets,
we considered 16 continuous frames as a unit with 8 frames
overlapping between adjacent units. Subsequently, all units are
input into the pre-trained C3D [19] to produce features for
video units. These 500-d and 4,096-d features are adopted
as the local features for ActivityNet Captions and TACoS,
respectively. Moreover, all parameters of CLEAR are initial-
ized randomly. The adam optimizer [31], [32] is adopted to

minimize the multi-task loss. Specially, in this paper, we set
2 layers (i.e., P = 2) semantic tree for ActivityNet Captions
and 4 layers (i.e., P = 4) semantic tree for TACoS. Besides,
we set hyper-parameter α to 1 for the subsequent experiments.
During the training, for ActivityNet Captions, the batch size
and learning rate are separately set to 32 and 0.0005; for
TACoS, the batch size and learning rate are set to 16 and 0.001,
respectively. In addition, we empirically set the maximum
number of epochs as 200 with the necessary early stopping
strategy to ensure convergence. All experiments are conducted
over a workstation equipped with Ubuntu 16.04.6 LTS, Intel
Xeon E7 CPU, 1 TB Memory and 4 × NVIDIA RTX 2080Ti
GPUs.

B. On Model Comparison (RQ1)

In order to justify the effectiveness of our proposed
CLEAR, we compared it with seven state-of-the-art baselines2:
MCN [3], ACRN [4], CTRL [6], ABLR [7], CMIN [10],
QSPN [16], and 2D-TAN [17].

Table I and Table II report the overall localization accuracy
results of our CLEAR and baselines on ActivityNet Captions
and TACoS datasets, respectively. According to these results,
we have the following observations:

• Both MCN and CTRL deliver inferior performance,
because they incorporate contextual information by either
roughly fusing the entire video features or extending
the moment boundaries within a limited scale. More
concretely, the former fuses too much contextual informa-
tion, which may bring in noise information and hurt the
discriminative context representation. The latter merely

2ABLR directly regresses the temporal coordinates based on maximum
co-attention weights/features, it hence merely generates R@1 results. More-
over, we adopted the latest extended version of CMIN [10]. In addition,
there are two variants of 2D-TAN model: 2D-TAN Pool and 2D-TAN Conv,
therefore we took the average R(n, m) of them as the overall performance
of 2D-TAN for fair comparison.
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TABLE I

LOCALIZATION ACCURACY COMPARISON BETWEEN OUR PROPOSED
MODEL AND SEVERAL STATE-OF-THE-ART BASELINES ON

ACTIVITYNET CAPTIONS DATASET (P-VALUE∗: P-VALUE

OVER R(1, 0.5))

TABLE II

LOCALIZATION ACCURACY COMPARISON BETWEEN OUR PROPOSED
MODEL AND SEVERAL STATE-OF-THE-ART BASELINES ON TACOS

DATASET (P-VALUE∗: P-VALUE OVER R(1, 0.5))

considers limited pre- and post-moment extension as con-
text, it hence fails to model the longer-term dependencies.

• ACRN, QSPN, and ABLR obtain higher localization
accuracy than MCN and CTRL. This reflects that the
attention mechanism indeed highlight crucial modality
information to enhance the corresponding representation
and overall localization performance.

• CMIN and 2D-TAN have relatively higher localiza-
tion accuracy than other baselines. The observed results
verify that the multi-stage cross-modal interaction and
long-range semantic dependency modeling are critical for
improving localization performance.

• CLEAR achieves the highest localization accuracy,
surpassing all state-of-the-art baselines, especially on
TACoS. As mentioned above, although TACoS does
bring greater challenges on moment localization, CLEAR
achieves the best performance, verifying the effectiveness
of our coarse-to-fine semantic alignment.

Furthermore, we conducted a significance test between
CLEAR and each baseline regarding R(1,0.5) based on
20-round results. All the p-values are smaller than 0.05,
indicating that the advantage of our CLEAR is statistically
significant.

C. On Component Analysis (RQ2)

We conducted ablation studies on our proposed model.
Concretely, we omitted specific components to generate the
corresponding ablation models as follows:

• CLEAR-V: We removed Bi-TCN in VRN and directly
adopted feature pooling for video encoding.

• CLEAR-C: We eliminated the fine-grained component
in MIN and adopted coarse-grained semantic alignment,

Fig. 7. Localization accuracy and efficiency comparison between our
CLEAR and its variants on ActivityNet Captions and TACoS datasets. (a) The
reported results based on R@1 w.r.t IoU ∈ {0.3, 0.5, 0.7} and RT on
ActivityNet Captions dataset; (b) The reported results based on R@1 w.r.t
IoU ∈ {0.3, 0.5, 0.7} and RT on TACoS dataset.

i.e., semantic similarity evaluation in the shared isomor-
phic representation space for moment localization.

• CLEAR-F: We removed our proposed coarse-grained
component and utilized fine-grained semantic alignment
to sequentially retrieve the highest similarity score in the
entire confidence map for moment localization.

We conducted component-wise evaluation on ActivityNet
Captions and TACoS datasets, respectively. The results are
shown in Fig. 7. By jointly analyzing the experimental results,
we have the following observations:

• CLEAR-C has the worst localization accuracy on two
datasets, especially on the more challenging dataset
TACoS. This phenomenon reveals that only relying on
the coarse-grained semantic metrics cannot accurately
capture the complex semantic similarity, therefore fail-
ing to complete effective moment localization. However,
since CLEAR-C discards the relatively time-consuming
fine-grained semantic matching, CLEAR-C is more effi-
cient than the other three competitors.

• CLEAR-V achieves relatively low accuracy but relatively
high efficiency. This indicates that on the one hand,
ignoring Bi-TCN does improve processing efficiency; on
the other hand, due to the lack of long-term dependencies
acquisition for video encoding, the accuracy may be
seriously affected. As shown in Fig. 7 (b), in the case of
IoU = 0.7 on TACoS, the accuracy is severely degraded.

• CLEAR-F delivers relatively high accuracy but the
lowest efficiency, which demonstrates that the lack
of coarse-grained semantic pruning cannot effectively
improve the overall localization efficiency.

• CLEAR has the relatively high localization accuracy
and efficiency on both datasets. The experimental results
not only demonstrate that CLEAR achieves the best
performance balance between accuracy and efficiency,
but also verify that the Bi-TCN, coarse-grained, and
fine-grained semantic alignment are all helpful for
moment localization.
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TABLE III

RUNNING TIME COMPARISON BETWEEN OUR PROPOSED CLEAR AND
THE STATE-OF-THE-ART BASELINES ON ACTIVITYNET CAPTIONS AND

TACOS DATASETS

D. On Efficiency Analysis (RQ3)

Table III reports localization efficiency comparison results
between our CLEAR and baselines on ActivityNet Captions
and TACoS datasets. By analyzing Table III, we could find
that:

• The efficiency of MCN, CTRL, and ACRN are relatively
low. Because they all adopt densely sliding window based
moment candidates generation and iteratively traversal
retrieving for the target moment related to the corre-
sponding query. They hence fail to complete moment
localization efficiently.

• The RA and RT of ABLR and 2D-TAN are smaller
than the above three models. This may be ascribed to
1) ABLR evenly divides the original video into the
corresponding moment candidates and directly performs
temporal coordinates regression; 2) 2D-TAN utilizes the
sparse sampling strategy for efficient cross-domain fea-
ture correlation modeling.

• CMIN obtains relatively higher efficiency than other
baselines. The main reason is that CMIN separately
adopts PCA and downsample strategies to perform corre-
sponding reduction operations on the feature dimension
and length. This not only accelerates the cross-modal
interaction, but also improves the overall efficiency.

• CLEAR has higher efficiency than all the baselines
except CMIN. This may be because CLEAR does not
adopt feature dimensionality reduction to accelerate rep-
resentation encoding. Moreover, it indeed takes certain
computational overhead to realize the multi-granularity
semantic alignment, resulting in lower efficiency than
CMIN. However, by jointly analyzing the experimental
results of RT in Fig. 7 and Table III, the efficiency of the
ablation model CLEAR-C is higher than that of CMIN.
Therefore, our model CLEAR comprehensively achieves
high accuracy and efficiency.

E. Qualitative Results

To qualitatively validate the effectiveness of our proposed
CLEAR model, we compared our model with two best base-
lines (CMIN, 2D-TAN) on two examples from ActivityNet
Captions and TACoS datasets, respectively. As shown in Fig. 8,
our proposed CLEAR achieves more accurate localization

Fig. 8. Moment localization results on ActivityNet captions and TACoS
datasets. All the above figures are the R@1 results.

results than the other two competitors, i.e., the target moments
returned by our model have the larger IoU with the cor-
responding ground truth moments. The reasons for these
results may be two-folds: 1) our proposed CLEAR can well
capture hierarchical semantic dependency and temporal-spatial
position relationships as compared to CMIN and 2D-TAN;
and 2) CLEAR utilizes multi-granularity semantic alignment
for cross-modal correlation modeling, which can significantly
improve the localization performance.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a deep cross-modal semantic
alignment network CLEAR for moment localization. Con-
cretely, we first design a dual-path neural network for video
moment semantic modeling and query intention understand-
ing, respectively. Thereafter, we develop a multi-granularity
interaction module to perform effective cross-modal semantic
alignment for target moment localization. Finally, we conduct
extensive experiments on two public benchmark datasets to
justify the superiority of our CLEAR model over several
state-of-the-art competitors. As a byproduct, we have released
codes and parameter settings to facilitate research in this
community.

In the future, we plan to deepen and widen our work
from the following four aspects: 1) we intend to integrate
the necessary knowledge distillation strategies [33], [34] and
query-guided attentive graph convolution networks [35], [36]
into our model for semantic consistency and complimentary
modeling, thereby improving localization accuracy. 2) We will
incorporate the multi-view metric learning [37], [38] into our
model to quickly filter out the irrelevant moment candidates
for reducing the searching overhead, whereby boosting the
overall efficiency. 3) we plan to integrate the deep collabo-
rative embedding [39] and semantic guided feature selection
approaches [40], [41] into our model, while achieving weakly
supervised moment localization [42]. And 4) we desire to
adopt CLEAR as a useful multi-modal representation learning
model into a wide range of multimedia application scenarios,
such as surveillance video analysis [43], [44], video recom-
mendation [45], [46] and multi-modal dialog system [47], [48].
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